Python 机器学习 决策树 中文和英文特征提取

Python 机器学习中,在使用决策树模型时,对于包含中文和英文特征的数据集进行特征提取是一个常见的需求。特征提取的目的是将原始数据转换为模型可以理解的格式。通常涉及到将文本数据编码为数值数据,以及可能的降维。有效地对包含中文和英文的数据集进行特征提取,从而为机器学习模型的训练做好准备。

参考文档:Python 机器学习 决策树 中文和英文特征提取-CJavaPy

1、对于英文特征提取

对于包含英文文本的特征,在使用决策树等机器学习模型之前,通常需要进行特征提取或转换,以将文本数据转换为模型可以处理的数值形式。文本特征提取的目标是将文本转换为一组数值特征,这些特征能够代表原始文本的某些重要属性。

1) 词袋模型(Bag of Words, BoW)

词袋模型是一种简单的文本表示技术,其中每个文档被表示为一个词汇表中词语的出现次数,而不考虑词序和语法。在词袋模型中,每个文档转换为一个长向量,此向量的长度等于词汇表中的词语数量,每个元素是特定词语在文档中出现的次数。

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 示例文本数据和标签
texts = [
    "the quick brown fox jumps over the lazy dog",
    "never jump over the lazy dog quickly",
    "the quick brown fox is quick",
    "a quick brown dog outpaces a quick fox"
]
labels = [0, 0, 1, 1]  # 假设我们有两个类别:0和1

# 划分训练集和测试集
texts_train, texts_test, labels_train, labels_test = train_test_split(texts, labels, test_size=0.25, random_state

登录后您可以享受以下权益:

×
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

举报

选择你想要举报的内容(必选)
  • 内容涉黄
  • 政治相关
  • 内容抄袭
  • 涉嫌广告
  • 内容侵权
  • 侮辱谩骂
  • 样式问题
  • 其他
点击体验
DeepSeekR1满血版
程序员都在用的中文IT技术交流社区

程序员都在用的中文IT技术交流社区

专业的中文 IT 技术社区,与千万技术人共成长

专业的中文 IT 技术社区,与千万技术人共成长

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

客服 返回顶部