Python 机器学习中,在使用决策树模型时,对于包含中文和英文特征的数据集进行特征提取是一个常见的需求。特征提取的目的是将原始数据转换为模型可以理解的格式。通常涉及到将文本数据编码为数值数据,以及可能的降维。有效地对包含中文和英文的数据集进行特征提取,从而为机器学习模型的训练做好准备。
参考文档:Python 机器学习 决策树 中文和英文特征提取-CJavaPy
1、对于英文特征提取
对于包含英文文本的特征,在使用决策树等机器学习模型之前,通常需要进行特征提取或转换,以将文本数据转换为模型可以处理的数值形式。文本特征提取的目标是将文本转换为一组数值特征,这些特征能够代表原始文本的某些重要属性。
1) 词袋模型(Bag of Words, BoW)
词袋模型是一种简单的文本表示技术,其中每个文档被表示为一个词汇表中词语的出现次数,而不考虑词序和语法。在词袋模型中,每个文档转换为一个长向量,此向量的长度等于词汇表中的词语数量,每个元素是特定词语在文档中出现的次数。
from sklearn.feature_extraction.text import CountVectorizer from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 示例文本数据和标签 texts = [ "the quick brown fox jumps over the lazy dog", "never jump over the lazy dog quickly", "the quick brown fox is quick", "a quick brown dog outpaces a quick fox" ] labels = [0, 0, 1, 1] # 假设我们有两个类别:0和1 # 划分训练集和测试集 texts_train, texts_test, labels_train, labels_test = train_test_split(texts, labels, test_size=0.25, random_state